
Eclipse 4 Programming
Model

and
Practices

Jin Mingjian

Agenda

● Eclipse 4 and Kepler
● Programming Model
● Good Practices
● Random Thoughts

Eclipse 4

● Modeled UI
○ modeling(MDD): EMF

● Dependency Injection
○ home made engine(? Sisu)

● CSS Styling
○ CSS 2.1

● Services Reload
○ ECommandService, EPartService, EModelService, ESelectionService,

EContextService, Logger, IEventBroker, IPresentationEngine
● Web

○ Orion

Eclipse 4 (Unchanged)

● OSGI Bundle
● other OSGI goods(like, Declarative Services)
● Eclipse Extension/Extension Points

by Tom
Schindl,
http:
//tomsond
ev.
bestsoluti
on.at

Kepler (new)

● Platform
○ performance fix
○ initial Eclipse 4 API released
○ UI improvement

● JDT
○ enhancements to content assist
○ enhancements to null annotation, leak analysis

● Tooling and releng
○ PDE: launch config, plugin image browser
○ CBI

Jun 26, 2013, http://www.eclipse.org/

Programming Model

● "How to interact with the programmed
system by its programmer"

● Old(Eclipse 3.x)
○ Kinds of APIs with numerous parameters

■ include interfaces/classes to be inherited
○ patterns: factory, fluent interface
○ APIs force the app flow and introduce strong

coupling
● Why new(Eclipse 4.x)?

○ A simplified model will largely reduce the
development and maintenance costs

Programming Model

● Modeled UI
○ MVC[1]: separates business from presentation
○ renderer agnostic - workbench rendered by other

renderer besides SWT
○ static model - e4xmi
○ dynamic model - DOM in browser
○ built-in models for UI

■ MWindow, MToolbar, MPartSashContainer,
MPart, MUILabel, MContribution, MContext

○ tooling to define the "application model"

[1] : http://en.wikipedia.org/wiki/Model–view–controller

Programming Model

● Modeled UI
○ one sample application model to UI

by Lars, http://www.vogella.com/articles/EclipseRCP/article.html

Programming Model

● Dependency Injection
○ thrives with Google Guice
○ IoC - managed
○ Decoupling - DBC favored
○ JSR 330 - annotations

■ @Inject
■ @Named...

○ Eclipse specific - less portable
■ @CanExecute, @Execute
■ @Preference
■ @EventTopic, @UIEventTopic
■ @Optional, @AboutToShow...

http://wiki.eclipse.org/Eclipse4/RCP/Dependency_Injection

Programming Model

● Dependency Injection
○ Internal to Eclipse homebrew DI

■ IEclipseContext - hierarchical
● k/v, set/get
● convention for global : class name -> instance

■ MContext - workbench model (@Active)

https://github.com/opcoach/contextExplorer

OSGI(Register)

Application

Window

Programming Model

[1] https://github.com/jinmingjian/eclipse.themes.darker

● Dependency Injection
○ ContextInjectionFactory#make

■ injection by manual when needed
○ Example: Darker theme[1]

Programming Model

https://github.com/jinmingjian/eclipse.themes.darker

Good Practices

● "Consume the services by dependency
injection way as possible."
○ "Service is verbose to use it correctly"
○ DI way cuts down boilerplates and makes your life

easier
○ Example:

Good Practices

● "Consume platform services as possible."
○ Overhaul for Eclipse platform
○ Example: Event Service

■ a mechanism for hooking/intercepting into the
whole platform

Good Practices

● "Injection to your objects in a full managed
way is simple."
○ Injection not come automatically
○ Sometimes you may miss APIs
○ Bind to IEclipseContext

■ direct control
■ RCP

Good Practices

○ Model Processor Extension
■ "A model processor is a normal injectable POJO class whose

processing is triggered by an @Execute annotated method."
■ Example:
■ The @inject-ed instances will be injected at a sometime

○ "Do not assume that @inject-ed objects could be
injected always(rightly)."

Good Practices

● "Eclipse 4 Tooling is your friend."
○ new introduced techniques paid for newcomers
○ CSS spy
○ CSS editor
○ Application model editor
○ Live editor

■ dynamically model workbench UI here

http://git.eclipse.org/c/e4/org.eclipse.e4.tools.git/

Random Thoughts

IDEA 12

IDEA 12

Random Thoughts
● Future of Workbench theme(Darker)

○ SWT standalones or RCPs are fine
○ many widgets of IDE Workbench do not support to

being styled in all platforms
■ Text, Button, Label...
■ rewrite the workbench UI to use other styleable

widgets
○ port SWT API to top of other flexible ui tech

■ on Swing(dead...)
■ on OpenGL(excited!)

● Bling(l33t labs, EclipsCon13)
■ on JavaFx(dormant)

Thank you!

Eclipse Hackathon

